这道编程题出自我之前从师兄那淘到的一本书:《算法竞赛入门经典》,清华大学出版社,刘汝佳著。
输入正整数 n (n ≤ 2 ≤ 100),把阶乘 n! = 1 ✖ 2 ✖ 3 ✖ … ✖ n 分解成素因子相乘的形式,从小到大输出各个素数的指数。
例如:825 = 3 ✖ 52 ✖ 11,应表示成(0, 1, 2, 0, 1),表示分别有0、1、2、0、1个2、3、5、7、11。
样例输入:
5
13
样例输出:
5! = 3 1 1
53! = 49 23 12 8 4 4 3 2 2 1 1 1 1 1 1 1
具体代码如下:
[cc lang = “cpp” escaped = “true”]
#include
#include
using namespace std;
// 素数判断函数(很经典了吧)
bool is_prime(int n) {
for (int i = 2; i * i <= n; i++)
if (n % i == 0) return false;
return true;
}
int main(void) {
int n;
while (cin >> n) {
vector
vector
for (int i = 2; i <= n; i++) {
// 如果是素数,那么记录指数
if (is_prime(i)) {
cnt[i]++;
primes.push_back(i);
}
// 否则将其分解
else {
int tmp_i = i;
for (int j = 0; j < primes.size(); j++)
while (tmp_i % primes[j] == 0) {
cnt[primes[j]]++;
tmp_i /= primes[j];
}
}
}
// 输出
cout << n << “! = “;
for (int i = 0; i < primes.size(); i++) {
cout << cnt[primes[i]] << ‘ ‘;
}
cout << endl;
}
return 0;
}
[/cc]